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Abstract: Mechanical motion sensing and monitoring is an important component in the field of
industrial automation. Rotary motion is one of the most basic forms of mechanical motion, so it is of
great significance for the development of the entire industry to realize rotary motion state monitoring.
In this paper, a triboelectric rotary motion sensor (TRMS) with variable amplitude differential hybrid
electrodes is proposed, and an integrated monitoring system (IMS) is designed to realize real-time
monitoring of industrial-grade rotary motion state. First, the operating principle and monitoring
characteristics are studied. The experiment results indicate that the TRMS can achieve rotation speed
measurement in the range of 10–1000 rpm with good linearity, and the error rate of rotation speed is
less than 0.8%. Besides, the TRMS has an angle monitoring range of 360◦ and its resolution is 1.5◦ in
bidirectional rotation. Finally, the applications of the designed TRMS and IMS prove the feasibility of
self-powered rotary motion monitoring. This work further promotes the development of triboelectric
sensors (TESs) in industrial application.

Keywords: triboelectric sensors; rotary motion; hybrid electrodes; integrated monitoring system;
industrial application

1. Introduction

Sensor technology is one of three central pillars in modern information technology [1,2]
and is applied widely in the fields of industrial automation, automotive electronics, and
communication technology [3–5]. It has become an indispensable criterion for measuring
the development of scientific research and industrial manufacturing. Among all kinds of
mechanical motions, rotary motion is one of the most basic forms in the field of industrial
automation, which has always been the research hotspot in the fields of science and
engineering applications [6–8]. The traditional sensing technologies for rotary motion
mainly include optoelectronic transformation [9,10], electromagnetic induction [11], and
electrical effects [12]. Moreover, with the continuous improvement of the level of industrial
automation and manufacturing requirements, passive sensor technology with self-powered
function has attracted more and more attention from researchers all over the world [13–15].

The triboelectric nanogenerator (TENG, also called the Wang generator [16]), first
proposed by Wang Group in 2012, provided a new approach of converting mechanical
energy into electricity [17–19]. The output signal of TENGs can well reflect the change of
mechanical excitation, and TENG has good adaptability to various forms of mechanical
motion, thus it is considered to be the potential solution of self-powered sensing [20–24].
In recent years, researchers have realized a preliminary exploration of rotation sensing
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and monitoring [25–29]. For instance, Xie et al. integrated a triboelectric sensor into a
bearing to achieve rotational speed monitoring of shaft components and applied the sensor
to the industrial application [30]. Wang et al. proposed a highly sensitive triboelectric
self-powered angle sensor used in the fields of robotic arms and personalized medical
care, which has the advantages of high resolution, lightweight, and thin thickness [31].
Previous studies are valuable for the development of triboelectric sensors (TESs) [32–35].
Furthermore, to achieve a comprehensive description of the basic state of the rotary motion
in the industrial field, it is essential to monitor multiple rotation parameters simultaneously
by TESs. On this basis, a systematic and integrated assembly can further promote the
practical application of TESs in industrial application.

Here, we propose a triboelectric rotary motion sensor (TRMS) with variable amplitude
differential hybrid electrodes. The hybrid electrodes comprise a variable amplitude elec-
trode and a differential electrode. The rotation speed and direction can be analyzed through
the change of amplitude and period of the A-phase electrical signals generated by the
variable amplitude electrode. Moreover, the B-phase sine electrical signals generated by the
differential electrode can further improve the sensor’s resolution. To verify the feasibility of
the TRMS, a series of experiments are carried out to evaluate the monitoring characteristics
of the sensor. In the speed range of 10–1000 rpm and the angle range of 360◦, the TRMS can
meet the basic requirements of the sensor signal monitoring, and has an angle monitoring
with a resolution of 1.5◦ in both clockwise (CW) and counterclockwise (CCW) rotation.
Compared with commercial encoders, the TRMS can achieve good linearity and a low error
rate. Based on the industrial applications of the designed integrated monitoring system
(IMS), this work can realize real-time monitoring of industrial-grade rotary motion state,
and be considered as possessing good prospects for industrial application.

2. Materials and Methods

The basic structure of the TRMS is illustrated schematically in Figure 1a, and the
prototype is mainly composed of a rotor, a stator, a shaft, and a shell. The rotor consists
of a layer of polytetrafluoroethylene (PTFE) film, a printed circuit board (PCB), a silica
gel gasket, a turntable, and an adjustment mechanism made of aluminum alloy (AL7075).
The stator consists of a silica gel gasket and a PCB. The PCB comprises a layer of copper
electrodes with different shapes (thickness 35 µm) and a bakelite disk (thickness 1 mm)
through established PCB production technology. A layer of PTFE with a thickness of
80 µm is attached to the surface of the copper electrodes of the rotor. To improve the space
utilization and output power of the sensor, each group of variable amplitude electrodes
of the stator corresponds to one electrode of the rotor in the A-phase, and each pair of
differential electrodes in the stator corresponds to one electrode of the rotor in the B-phase.
To better transmit torque, the turntable is used to connect the shaft and the PCB. Besides,
the adjustment mechanism of the rotor and the silica-gel gasket can allow the rotor and the
stator to more fully come into contact. The rotor and the stator consist of a TENG module,
which converts external rotary mechanical energy into electricity based on the coupling of
the triboelectric effect and electrostatic induction.

As shown in Figure 1b, the electrodes of the TENG module are divided into two
phases: A-phase and B-phase. For the convenience of observation, the interdigital electrode
interval θ is set as 20◦. The stator copper electrodes of A-phase and B-phase are two groups
of annular-arranged interdigital electrodes. In the A-phase, every two electrodes of the
stator with the same size form a pair of interdigital electrodes. However, the length of
each pair of adjacent interdigital electrodes is different. As the absolute value of the output
signal is proportional to the friction area, the amplitude of adjacent periodical signals
output by the A-phase is variable. When the rotation direction is recognized by the variable
amplitude electrical signals, the sensor needs to output at least three period electrical
signals with different amplitude. Therefore, every three pairs of interdigital electrodes of
the A-phase are set as a group of circulating electrodes. Besides, the B-phase electrodes of
the stator are a group of differential interdigital electrodes with the same electrode interval
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as the A-phase. Further, the signal phases corresponding to A-phase and B-phase are
shifted by θ/2 along the rotation direction, which can double the sensor’s resolution. When
the number of differential electrode groups increases, the sensor’s resolution can be further
elevated. It is worth noting that the A-phase electrodes of the rotor are evenly divided
into three copper electrodes according to the change in the length of a set of stator variable
amplitude electrodes, which can effectively reduce the interference to the amplitude change
of the electrical signal.

Figure 1c,d show photographs of the assembled TRMS. The interdigital electrode
interval θ is processed to 3◦ under the premise of manufacturing accuracy. Therefore, the
resolution of the prototype can reach 1.5◦. The PCBs of the rotor and stator are shown in
Figure 1e,f, respectively.
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the rotor, so the external rotary motion can be monitored by the electrical signal 
generated by the TRMS. The rotor is in sliding contact with the stator to create electrical 
signals with two phases simultaneously. Taking the B-phase as an example, the operating 
principle of generating the electrical signals is shown in Figure 2a. 

When the rotor slides by external rotary, the copper electrodes (E1, E2, and E3) in the 
rotor and stator will generate positive charges under the action of the triboelectric effect. 
Owing to the different triboelectric polarities, the PTFE film will generate negative 
charges. The electrode of the rotor E1 is wholly aligned with the electrode of the stator E2 
(state i). As the PTFE film is pasted on the electrodes of the rotor, the positive charges of 
the electrode E1 are equal to the sum of the negative charges on the surface of the PTFE 

Figure 1. Structural design of the triboelectric rotary motion sensor (TRMS). (a) Schematic structure of the TRMS. (b)
Relative position placement of the electrodes (θ = 20◦) in the stator and rotor. (c,d) Photograph of the assembled TRMS. (e)
Photograph of the printed circuit board (PCB) of the rotor. (f) Photographs of front and back of the PCB (θ = 3◦) of the stator
(scale bar: 1 cm). PTFE, polytetrafluoroethylene.

The mechanical energy in the TRMS comes from the synchronous rotary motion of
the rotor, so the external rotary motion can be monitored by the electrical signal generated
by the TRMS. The rotor is in sliding contact with the stator to create electrical signals with
two phases simultaneously. Taking the B-phase as an example, the operating principle of
generating the electrical signals is shown in Figure 2a.

When the rotor slides by external rotary, the copper electrodes (E1, E2, and E3) in the
rotor and stator will generate positive charges under the action of the triboelectric effect.
Owing to the different triboelectric polarities, the PTFE film will generate negative charges.
The electrode of the rotor E1 is wholly aligned with the electrode of the stator E2 (state i). As
the PTFE film is pasted on the electrodes of the rotor, the positive charges of the electrode
E1 are equal to the sum of the negative charges on the surface of the PTFE and the electrode
E2. There is no charge transfer between the interdigital electrodes in the stator due to the
electrostatic equilibrium. When the electrode E1 slides from the corresponding position of
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electrode E2 to electrode E3 (state ii to state iii), the original electrostatic equilibrium will be
destroyed. Under the action of electrostatic induction, an electric potential difference will
be generated between the interdigital electrodes in the stator, which will cause electrons to
flow between the interdigital electrodes of the stator to form a new electrostatic equilibrium,
and causing the external load to form a transient current. Once the electrode E1 completely
overlaps the electrode E3 (state iv), all the electrons are transferred to the electrode E3, and
the electrostatic equilibrium between the interdigital electrodes of the stator is reached
again. This is the half cycle of the electrical signal generation process. Similarly, when
the rotor continues to slide, the electrons will flow back from electrode E3 to electrode E2.
Therefore, an alternating current signal is generated during the continuous relative sliding
of the slider.

Figure 2b(i),c(i) illustrate a cycle rotary process of the TRMS in two different rota-
tion directions and finite element simulation results of the potential distributions using
COMSOL software. The corresponding electrical signals are shown in Figure 2b(ii),c(ii).
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Figure 2. Operating principle of the TRMS. (a) The working principle of generating the electrical signals. (b,c) The finite
element simulation of the potential distributions of the TRMS and the sketches of signal generation processes under the
different rotation directions. CW, clockwise; CCW, counterclockwise.

3. Results and Discussion
3.1. Output Characteristics

In the electrical measurement process of the actual application, the TRMS is driven by
a commercial motor at specified rotation speeds. To meet the requirements for the signal
processed by the microcontroller unit (MCU) and ensure the authenticity of the analyzed
signal, a voltage divider circuit is connected to the TRMS. Among them, the resistance
relationship of the voltage divider circuit is R1 > R2. Resistances of the loads R1 and R2 of
the voltage divider circuit are selected as 200 MΩ and 0.1 MΩ, respectively. To carry out
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the experiment and application of the TRMS, the electrical signals after passing through
the voltage divider circuit can be acquired, processed, and analyzed by two different
systems. Figure 3a illustrates the schematics of the experiment system and IMS of the
TRMS, respectively. The experiment system acquires electrical signals through a data
acquisition card (NI USB-6210) and uses NI LabVIEW software to process the electrical
signals. The relevant information such as the rotation speed, angle, and direction of external
rotary motion is obtained by analyzing the electrical signals and finally displaying them on
the software interfaces. To realize the integrated application of rotary motion monitoring
in actual working states, the IMS uses an MCU for electrical signal acquisition, processing,
and analysis. A liquid crystal display (LCD) is used to visually display the rotation speed,
angle, and direction of the rotary motion processed by the MCU.
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and integrated monitoring system (IMS) of the TRMS. (b) The CW rotation: A-phase, B-phase, and A&B-phases. (c) The
CCW rotation: A-phase, B-phase, and A&B-phases. LCD, liquid crystal display; MCU, microcontroller unit.

To verify the basic output performance of the TRMS, the experiment system is used
to conduct experimental tests in the CW and CCW rotation. Figure 3b,c show the output
performance of the variable amplitude electrode (A-phase (i)) and the differential electrode
(B-phase (ii)) of the TRMS in the speed range of 10–1000 rpm, respectively. It can be
seen that the load voltage under the different rotation speeds meets the signal processing
requirements of the MCU, which can avoid saturation distortion during signal processing
and reduce signal analysis errors. Meanwhile, the load voltage of the electrical signal
increases with the raising of the rotation speed. As rotation speed monitoring utilizes the
number of electrical signal periods as a reference, the change of load voltage amplitude
does not affect the signal processing process. Moreover, Figure 3b(iii),c(iii) show the hybrid
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electrical signals generated by the two phases of TRMS. Because the output electrical
signals are acquired through two channels that do not interfere with each other, the hybrid
electrical signals output by the hybrid electrodes is steadily leading to no effect on signal
processing and analysis. According to the experimental results, the TRMS can achieve
effective capture of rotary mechanical energy in the speed range of 10–1000 rpm.

Figure 4a(i)–(iii) show the electrical signals in the CW rotation of the TRMS. In a cycle
of electrical signals generated by three pairs of variable amplitude electrodes, the load
voltage amplitude of A-phase increases sequentially at different speeds, thus the rotation
direction is CW. Figure 4b(i)–(iii) show the electrical signals in the CCW rotation of the
TRMS. Contrary to the output state in the CW rotation, when the load voltage amplitude
of A-phase decreases sequentially at different speeds, the rotation direction can be judged
as CCW. In addition, the electrical signals of the B-phase are the steady sinusoidal signal in
both CW and CCW rotation, which has a phase difference of about π/2 from the electrical
signals of the A-phase. The above experimental results are entirely consistent with the
theoretical analysis results (Figure 2b,c). To reflect the rotation angle monitoring of the
TRMS, an incremental extreme value counting (IEVC) program is performed by software.
When the hybrid electrical signals reach the extreme value point (peak or valley) for the
first time, the digital quantity (DQ) rises to “1”. Then, when it reaches the extreme value
point (peak or valley) for the second time, the DQ drops to “0” and repeats the above steps
to achieve incremental monitoring of rotation angle. It is worth noting that it is only related
to the number of extreme value points in this counting program. The results analyzed by
the IEVC program under the rotation speed of 1000 rpm are shown in Figure 4a(iv),b(iv).
The above experiment results verify the feasibility that the direction and angle monitoring
of the industrial-grade rotary motion can be realized by the amplitude characteristics of
the hybrid electrical signals. Figure 4 shows that the output phase difference between
the A-phase and B-phase has a small error. The reasons may be the assembly error of the
prototype and the unstable delay caused by the equipment.
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Moreover, the TRMS can monitor the rotation speed by the frequency of output signals.
A periodic signal includes two pairs of adjacent interdigital electrodes, and the following
equation is used to calculate the rotation speed n:

n =

(
2θ

C0

)
f t0 (1)

where n is the rotation speed of the rotor, θ is the interdigital electrode interval, f is the
frequency of electrical signals, and C0 and t0 are constant numbers (C0 = 360◦ and t0 = 60 s).
The interdigital electrode interval of the prototype θ is 3◦. Therefore, the relationship
between the rotation speed n and the frequency of electrical signals f of the prototype can
be expressed as follows:

n = f (2)

The frequencies at different rotation speeds of 10–1000 rpm are acquired for linear
fitting and their linearity and error rate are analyzed. The calculation equation of the error
rate δ is as follows:

δ =
|n− nEncoder|

nEncoder
× 100% (3)

where δ is the error rate of TRMS and nEncoder is referenced rotation speed monitored by
the encoder.

The analysis results of the CW and CCW rotation are shown in Figure 5a,b, respectively.
The TRMS shows good linearity between its rotation speed and frequency in the range
of 10–1000 rpm, and the adjusted R square of the A-phase and B-phase are equal, at
about 0.99992. The good linearity proves the excellent ability of the TRMS as a rotation
speed monitoring sensor. Moreover, the rotation speeds calculated from the frequency of
the TRMS are compared with the values measured by the encoder; the error rate can be
controlled below 0.8%. Significantly, the TRMS shows better accuracy under high rotation
speeds, and the error rate of the TRMS is less than 0.2%. The reason for this experimental
phenomenon is that, when the rotation speed is higher, the load voltage of the electrical
signal is larger, and the signal-to-noise ratio is better at this time.
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Further, a durability experiment is performed on the TRMS. As shown in Figure 5c,
after about 7 h of continuous testing, there is no significant electrical signal attenuation.
The experiment process is equivalent to a continuous rotary motion of approximately
42,000 revolutions, proving that the TRMS is stable enough to perform well in long-term
operation.

3.2. Demonstration and Application

A mechanical rotary motion monitoring system program is developed by the LabVIEW
software to realize the application of the TRMS. The flow chart of the signal processing
program is shown in Figure 6a. Firstly, the difference between adjacent value ki (i = 2~4)
is calculated by the peak and valley values of the A-phase electrical signal, and then the
three adjacent differences are compared to judge the rotation direction of the rotary motion.
Secondly, the number of extreme value points (peak and valley) of the hybrid electrical
signals is 4m to calculate the rotation angle (the value is four times the number of signal
periods of A-phase for one revolution m). Finally, the rotation speed n is calculated by the
number of signal periods of the A-phase for one revolution m and the frequency of the
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A-phase electrical signal f. The error rate at different rotation speeds can be displayed by
comparing it with the value measured by the encoder in real time.

A rotation speed calibration experiment is performed on the TRMS, and the corre-
sponding mechanical rotary motion monitoring system and functional display interface in
the three different states are shown in Figure 6b. The demonstration of the system in Video
S1 confirms that the TRMS can measure the rotary motion of the industrial-grade mechani-
cal shaft system with high resolution. In addition, to realize the integration of the prototype,
the TRMS is made into an IMS using modular electronic components. Figure 6c shows
the industrial application of the IMS. The application process is given in Video S2. More
importantly, the IMS verifies the feasibility of the TRMS for self-powered rotary motion
monitoring and can meet the requirements of most industrial manufacturing applications.
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4. Conclusions

In summary, we have proposed a TRMS with variable amplitude differential hybrid
electrodes and designed an IMS based on the TRMS, digital signal processing method,
and modular electronic components. The monitoring of industrial-grade rotary motion
state is realized by the variable amplitude differential hybrid electrodes generating two-
phase electrical signals simultaneously. The signal characteristics of the TRMS under
different motion states are monitored in the experiment system. The results indicate
that the TRMS can realize rotation speed measurement in the range of 10–1000 rpm and
incremental rotation angle monitoring in the range of 360◦ with 1.5◦ of the resolution of the
rotation angle. Moreover, the error rate of the rotation speeds calculated from the TRMS
frequency can be controlled below 0.8%. Significantly, the error rate of the TRMS is less
than 0.2% under the high rotation speeds. It has a high resolution and excellent linearity
and can meet the requirements of most industrial manufacturing applications. Based on
the above experience and the application, the TRMS can realize self-powered monitoring of
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industrial-grade rotary motion state. This work is of great significance to the development
of triboelectric sensors in industrial automation sensing and monitoring.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/5/1713/s1, Video S1: The Demonstration of TRMS in Mechanical Rotary Motion Monitoring
System; Video S2: The Industrial Application of TRMS in Integrated Monitoring System.
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